Quick, Cost-Effective & Scalable Retrofitting Technique -

सी. एस. आई. आर. - केंद्रीय भवन अनुसंधान संस्थान, रूड़की-247667 (भारत) CSIR- Central Building Research Institute, Roorkee-247667 (India)

श्रीस्वआईआर भारत का नदाचार इंजन The Innovation Engine of India

FOREWORD

The seismic vulnerability of masonry buildings remains a significant concern in India and in many earthquake-prone regions around the world. Strengthening our built environment and enhancing the safety of our communities have always been central to the mission of the CSIR-Central Building Research Institute (CBRI), Roorkee.

In this context, I am pleased to introduce **STABLE** — *the Steel Twin Lintel Band for Advancing Building Life and Earthquake Safety* — a quick, cost-effective, and scalable retrofitting technique designed to substantially improve the seismic performance of masonry structures. This innovative technique has been developed to address the urgent need for practical, easily adoptable solutions that can be implemented widely, even in resource-constrained and rural areas, without major disruptions or specialized equipment.

The development of STABLE is a testament to the spirit of scientific collaboration and innovation. This technique is the result of dedicated research efforts by scientists from CSIR-CBRI, Roorkee, and the Indian Institute of Technology Kanpur, by conducting full-scale tests to evaluate its performance on damaged unreinforced masonry structures. This rigorous experimental validation has ensured that the technique is not only theoretically sound but also practically effective in real-world conditions.

By enhancing the integrity of non-engineered and vulnerable masonry buildings, STABLE aims to protect lives, preserve critical infrastructure, and strengthen the resilience of our communities against future seismic events.

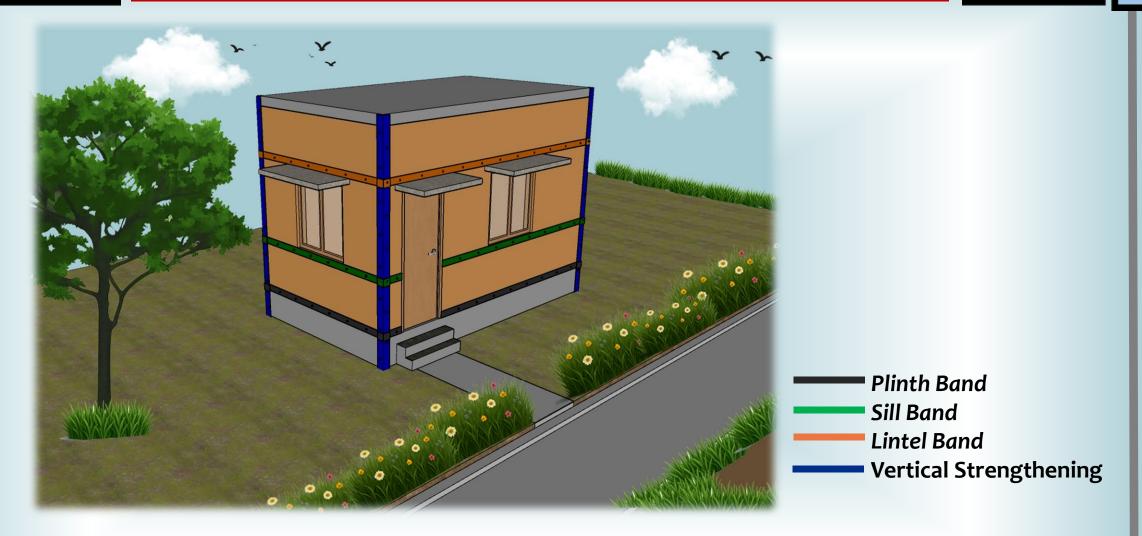
I sincerely commend the efforts of the research team for their exceptional work in developing and refining this pioneering technique. I am confident that this booklet will serve as a valuable resource for engineers, architects, builders, and policymakers, and will inspire wider adoption of retrofitting measures to build a safer and more sustainable future.

I extend my best wishes to all stakeholders engaged in implementing and promoting this important initiative. Let us work together towards realizing the vision of an earthquake-resilient India.

Prof. R. Pradeep KumarDirector

CSIR-Central Building Research Institute, Roorkee

सी. एस. आई. आर. - केंद्रीय भवन अनुसंधान संस्थान, रूड़की-247667 (भारत) CSIR- Central Building Research Institute, Roorkee-247667 (India)

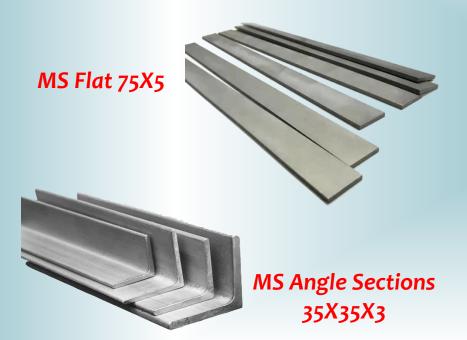

MOTIVATION

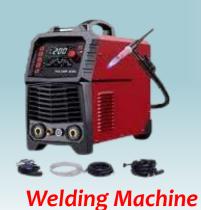
❖ 85% Buildings in India are Unreinforced Masonry

Masonry being heterogeneous materials, its performance in past earthquakes was very poor leading to collapse of buildings Need of quick, cost-effective and scalable retrofitting technique, which can be executed during normal functioning

WHY SEISMIC BAND?

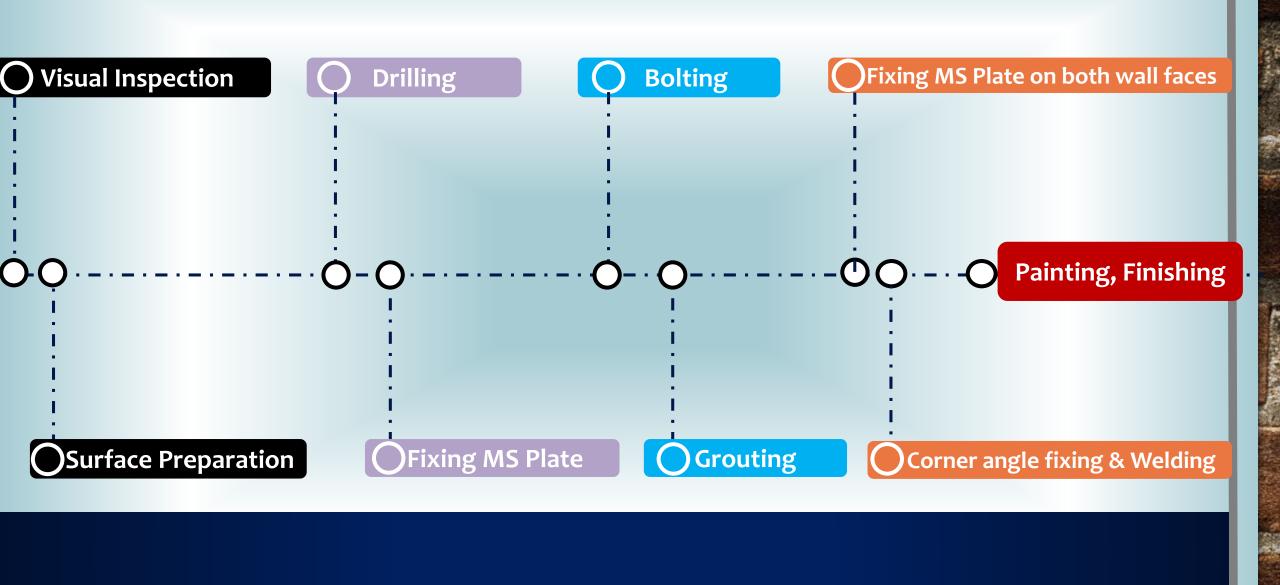
- Connects together all walls of the building
- * Attains integral box action and Provides overall stability to the Masonry structure
 - Redistributing horizontal inertia forces from roof level to lower levels


RETROFIT TOOLS AND MATERIALS



Drilling Machine

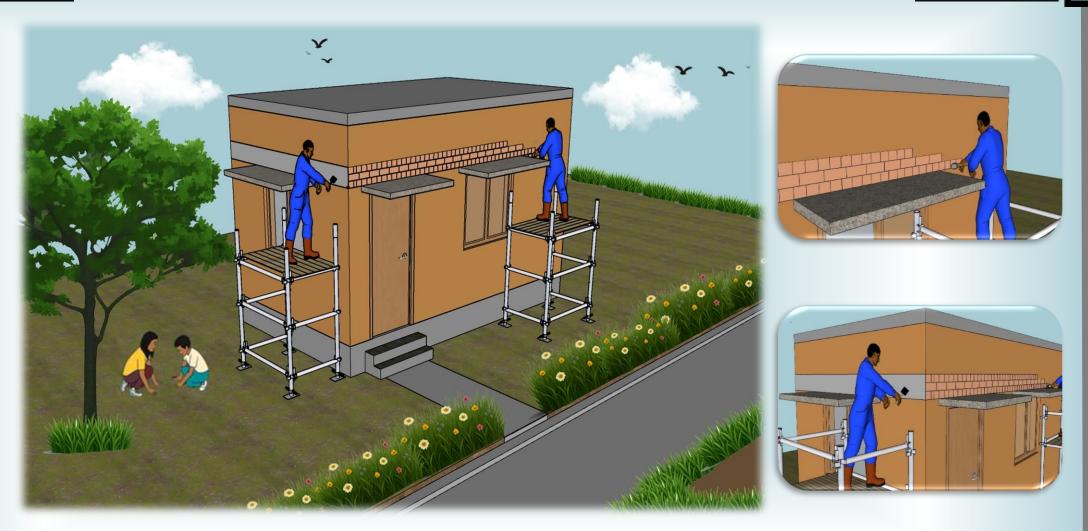
10mm dia. MS Bolts 350 mm long with Double Nug & Washers



- Materials to be used must be of satisfactory quality as per Indian Standard
- * Apply Anti-corrosive protective coatings to steel so as to prevent corrosion and ensure durability
- Proper anchorage and bonding are essential for integrating new materials with existing masonry

STEPS INVOLVED

VISUAL INSPECTION



- Examine the existing masonry for visible cracks, bulging, or deterioration
- * Record and verify the level and alignment of door and window openings
- Inspect the existing surface finishes to plan surface preparation accordingly

SURFACE PREPARATION

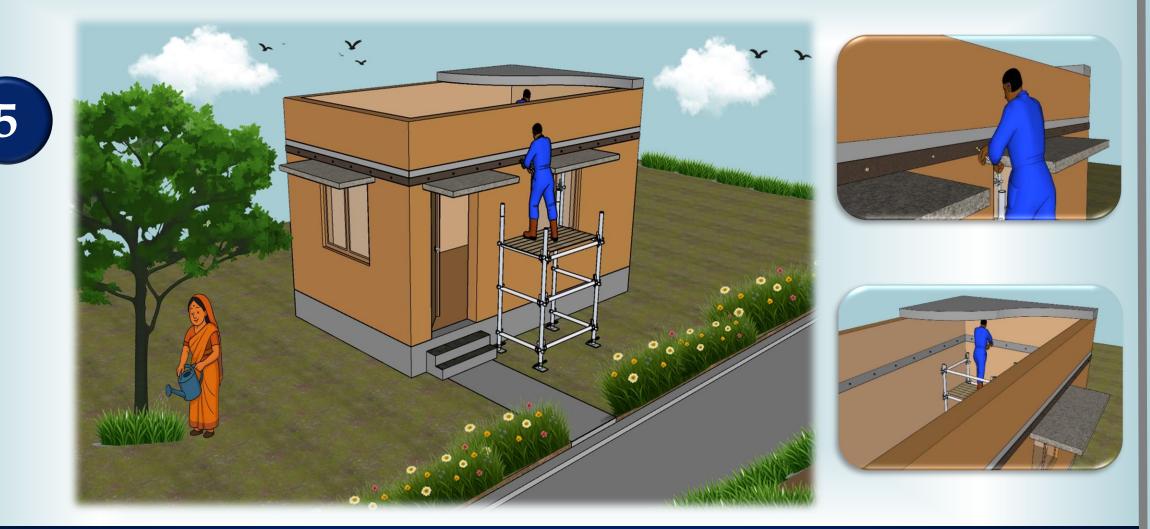
2

- * Remove 200mm wide plaster from both wall faces along the intended levels
- Clean, smooth the brick wall by wire brush and apply water spray on wall surface
 Apply a thin cement slurry coat on prepared wall surface

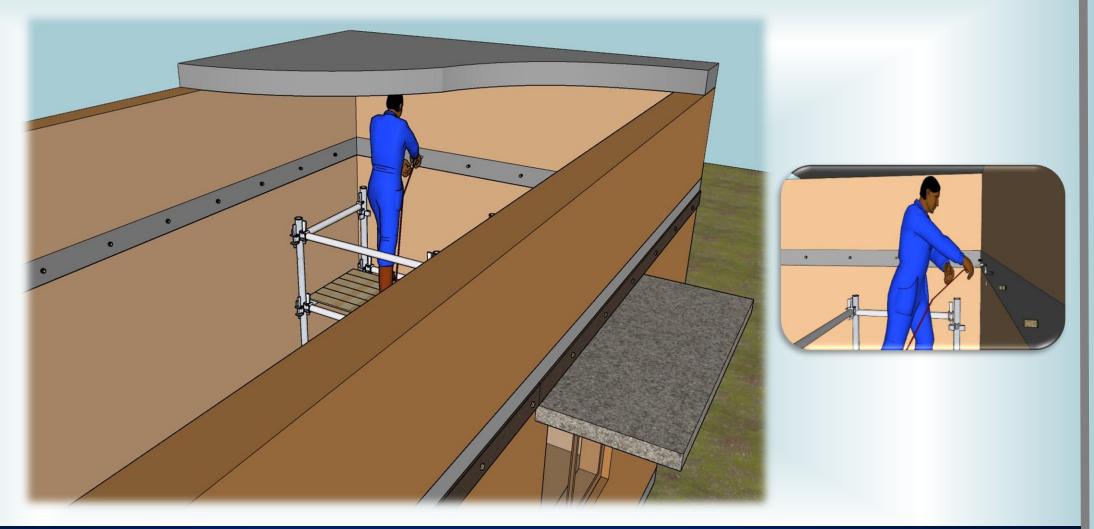
DRILLING

3

Drill 12 mm diameter holes along the band line at intervals, as per Table 1 given at the end
 Clean drilled holes using compressed air and water to remove dust and loose particles

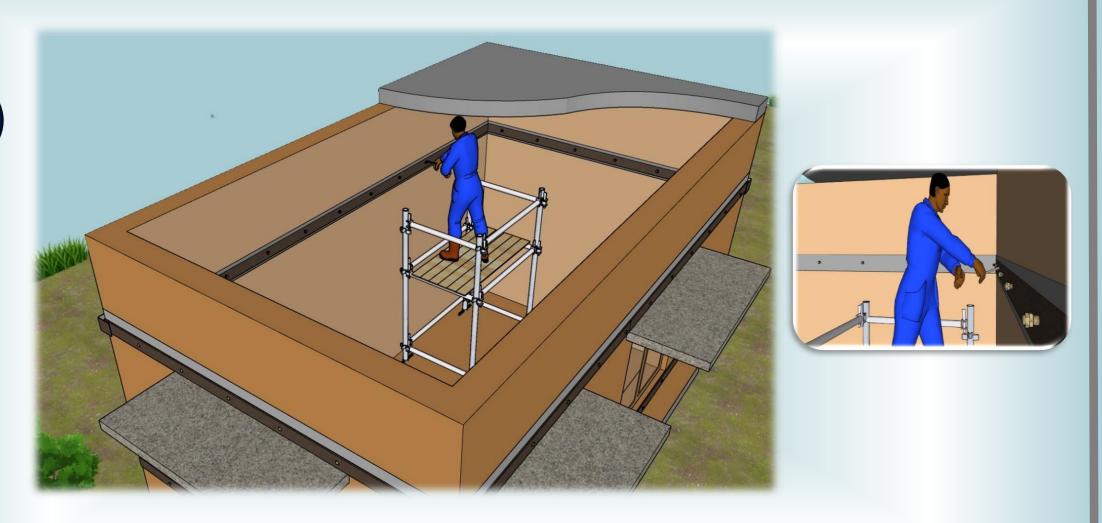

FIXING MS FLAT

Position the first MS flat on outer face of the wall
 Temporarily fix it using bolts
 Insert bolts through the flat such that bolt heads remain on outer face


BOLTING

Insert MS bolts through the holes with head on one end, threads on the other
 Total length of 10mm dia MS Bolt= Head thickness+Wall thickness+50 mm (for washer+bolts); 350mm long for 230mm thick wall
 Apply anti-corrosive coating on all steel components prior to fixing and before painting

GROUTING


6

- ❖ Inject cement grout into the drilled holes from free end of bolt (upon inserting bolts with MS Flat on one face of wall) at a pressure of 4-5 kg/cm²
 - * This improves anchorage, fills voids, and enhances bond strength

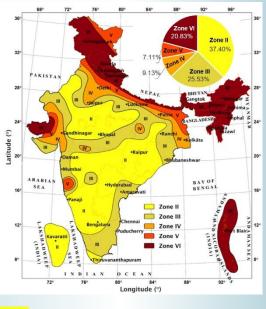
FIXING MS FLAT ON OPPOSITE FACE

- Position and fix the second MS flat on the opposite wall face
 Secure with double nuts and washers on each bolt
- Ensure spacing and dimensions of MS flats and bolt spacing, as per Table-1

CORNER ANGLE FIXING AND WELDING

- At wall junctions, fix MS corner angles to ensure lateral continuity and deformability
 - * Anchor angles to the masonry with bolts and weld to the ends of adjacent MS flats
- ❖ Fill any gaps between flat and wall with cementitious grout to have better contact of MS Flat with Wall

PAINTING & FINISHING


- ❖ Apply protective coatings on all steel components again
- Restore wall finishes using plaster and paint as per original aesthetic
 - * Reroute or accommodate electrical/plumbing services, as required

FOR LOW SEISMIC ZONES-II,III

10

Seismic Zone Map of India

Zone II: PGA = 0.075g

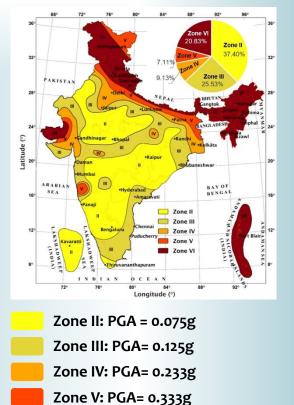
Zone III: PGA= 0.125g

Zone IV: PGA= 0.233g

Zone V: PGA= 0.333g

Zone VI: PGA= 0.500g

❖ Zone II/III: Low seismic risk


Provide lintel band as per Table-1, fixed by bolting and corner angles with welding at corners

FOR MODERATE & HIGH SEISMIC ZONES-IV, V, VI

Seismic Zone Map of India

Zone VI: PGA= 0.500g

Zone IV: Moderate seismic risk; Zone V: High seismic risk; Zone VI: Very high seismic risk
 Provide Vertical Strengthening at Corners and Intersection using Angle Section, as per Table-1, to be fixed by bolting/welding

SEISMIC STRENGTHENING FOR MASONRY BUILDINGS

Table-1: Seismic Zonewise MS Flat Sections, Bolt Spacing and Corner Vertical Strengthening

Zone	Parameters	Zone II	Zone III	Zone IV	Zone V	Zone VI
Storey						
1st Storey	MS Flat Section Size	ISF 65x3	ISF 65x3	ISF 65x5	ISF 75x5	ISF 75x5
	Bolt Diameter (mm)	10ф	10ф	10ф	10ф	10ф
	Bolt Spacing (mm)	@ 500 C/C	@ 500 C/C	@ 500 C/C	@ 500 C/C	@ 400 C/C
	Corner Vertical Angle(mm)	-		ISA 35x35x3	ISA 50x50x3	ISA 65x65x4
2nd Storey	MS Flat Section Size	ISF 65x3	ISF 65x3	ISF 75x5	ISF 75x5	ISF 90x5
	Bolt Diameter (mm)	10ф	10ф	10ф	10ф	10ф
	Bolt Spacing (mm)	@ 500 C/C	@ 500 C/C	@ 400 C/C	@ 400 C/C	@ 400 C/C
	Corner Vertical Angle(mm)	-		ISA 35x35x3	ISA 50x50x3	ISA 65x65x4
3rd Storey	MS Flat Section Size	ISF 65x3	ISF 75x3	ISF 75x6	ISF 90x5	ISF 100x5
	Bolt Diameter (mm)	10ф	10ф	10ф	10ф	10ф
	Bolt Spacing (mm)	@ 500 C/C	@ 500 C/C	@ 350 C/C	@ 300 C/C	@ 300 C/C
	Corner Vertical Angle(mm)	-	ISA 25x25x3	ISA 35x35x3	ISA 50x50x3	ISA 65x65x4
4th Storey	MS Flat Section Size	ISF 65x3	ISF 75x3	ISF 75x6	ISF 90x5	ISF 125x5
	Bolt Diameter (mm)	10ф	10ф	10ф	10ф	10ф
	Bolt Spacing (mm)	@ 500 C/C	@ 500 C/C	@ 350 C/C	@ 250 C/C	@ 300 C/C
	Corner Vertical Angle (mm)	-	ISA 25x25x3	ISA 35x35x3	ISA 50x50x3	ISA 65x65x4

Provide MS Flat, Bolt Spacing and Corner Vertical Strengthening Angle as per above, based on seismic zone and number of story in building to be retrofitted

RETROFIT COST (Rupees/ Sq. Ft.)

Zone/ Floor	Zone II	Zone III	Zone IV	Zone V	Zone VI
1st Storey	150	200	250	300	400
2nd Storey	2nd Storey 150		315	350	500
3rd Storey	200	275	345	475	550
4 th Storey 200		300	450	525	575

STABLE: Steel Twin lintel band for Advancing Building Life and Earthquake safety

About the Innovators:

Prof. C.V.R. Murty

A renowned earthquake engineering expert, Prof. Murty presently Professor at IIT Madaras (formerly at IIT Kanpur and Jodhpur) has made pioneering contributions to seismic design and safety of structures in India. He has been instrumental in advancing earthquake-resistant construction and capacity building nationwide.

Dr. Ajay Chourasia

A leading scientist at CSIR-CBRI, Dr. Chourasia specializes in seismic risk assessment and retrofitting of masonry and RC structures. His work focuses on developing practical, scalable solutions to improve structural resilience.

Dr. Shailesh Agrawal

An eminent researcher and Executive Director of BMTPC, Dr. Agrawal has championed the promotion of innovative, cost-effective construction technologies and disaster-resistant housing systems across India.

Innovators:

Dr. Ajay Chourasia Dr. Shailesh K Agrawal Prof. C V R Murty

Contributors:

Prof. R Pradeep Kumar Dr. Ajay Chourasia Dr. M M Ansari

Mr. Jalaj Parashar Ar. S Kavitasree

Ms. Shaina Sachdeva

For Details Contact:

Director

CSIR- Central Building Research Institute Roorkee – 247667, India

Ph. : +91-1332-272243

Fax : +91-1332-272272, 272543 E-mail: director@cbri.res.in

Website : http://www.cbri.res.in

COPYRIGHT © 2025 CSIR- Central Building Research Institute, Roorkee

The research program was conducted jointly by CSIR-CBRI and IIT, Kanpur. This release is a property of CSIR-CBRI, Roorkee. It may be reproduced without changing its contents and with due acknowledgement. Suggestions/Comments for further improvements may be sent to: ajayc@cbri.res.in